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P.M. Woodward

Radar is a systeom of measurement rather than communication, yet
it ds quite possible to apply information theory to it, in order to
sec whether the very small received signals inherently contain as much
information as those of an ildeal communication system working at the

same signal-to-noise ratio. It turns out that they do, very nearly,
tut this 1s not really what makes radar a suitable topic for this
symposium, The main integest is in the type of coding it represents.

Shannon has pointed out that when the natural number »f dimensions
of a message 1s artificilally increased by mapping non-topologically
into a signal space of higher dimensions, a marked threshold effect

is produced. Radar exhibits such a threshold particularly well and
it is to this that I wish to direct attention.

We shall consider only the most obvious radar probleﬁ, that of
measuring the range of a stationary target. This is one-dimensional
information, and it is important to realize that the way in which it
is coded is almost entirely beyond control: it is determined by the

very nature of radar. A known periodic waveform is transmitted,
echoed, and received again. The time ¥V which elapses between trans-
mission and reception represents the range of the target. Unlike most

systems of electrical signalling, the choice of transmitted waveform does
not represent the required information but forms part of the observer's
a priori knowledge. All the required information is embodied in the
time—-delay of the received waveform. If we fix the received signal
energy, this leaves the received signal with only one degree of freedom,
but the noise which goes with it will have many degrees of freedom.

In geometrical language, the received signal is treated as a point in

a multi-dimensional waveform space, and the ensemble of received signals
lie along a one~dimensional twisted curve embedded in this hyper-~space,
and incidentally lying on the surface of a hyper-sphere. One there-~
fore expects a threshold effect as soon as the noise perturbation is
sufficiently large to short—cut the convolutions of this message locus,
and introduce wild ambiguities of range measurement.

However, there is really no difference in principle between inter-
preting a radar signal and any other kind of signal. The observer
always has some a priori knowledge of what he is trying to receive, and
it merely happens that in radar he knows, apart from noise, the exact
shape of the waveform. Obviously his first step is, effectively,
to place the transmitted and received waveforms side by side, and try
to estimate the time-shift V. If the possible values of T are known a
priori to be continuously distributed, it should be clear that in the .
presence of noise he cannot hope to determine ¥ exactl¥, because this
would represent an infinite quantity of information and would require
an infinite amount of signal energy. His best estimate is therefore
bound toc be subject to error. One might suppose, then, that the first
problem is to determine theoretically the spread of his best guesses
over an ensemble of received waveforms all resulting from the same
true value of T ., The average quantity of information obtained in
any determination would then be given by

I = HE) - Hx(y).

Shannon (2) uses x to symbolise transmission and y to symbolise
reception, but it must be understood that the "transmitted message" in
radar has nothing to do with the radar transmitter; it refers to the
true value of 'V, while y refers to the observer's estimate of ¥

The entropy H(ys is a measure of the spread of variability of all
previous guesses over a complete ensemble of true values, and therefore
represents the a priori uncertainty about the next sne, while the
conditional entropy Hy(y) represents the spread of the guesses in an
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ensemble in which the true value is fixed and enly the nolse-pample i3
different. This mignt scem to be the obvicus approach, but it is not
altogether satisfactory becausc it appears to contain subjectives
¢lements, Tt appears to depend on the particular way in which the
observer makes his guess. If he were no good at guessing, Hx () would
be large and the quantity »% information small. The maximum quantity of
information latent in the reccived waveform could only be evaluated by this
method by giving rules for making the best possible guess,

This whole difficulty ds avoided by starting from the alternative
formula.

I = H({x) - Hy(x)

Here H{(x) is the entropy of the a priori distribution for the true

value of ¥ , not the guessed value. The equivocation, Hy(x),srepresents

the observer's uncertainty about the true value of Von any one occasion,

i,e. when the received waveform is fixed. We have, then, to consider a fixed
received waveform, arising from a true range Vo say, and find out from

it, not simply the most probable value of Vit might represent, but a com-

plete probability distribution for all possible values of v, This is not
subjective at all: it represents the matter-of-fact frequency distribution

of those values of% which could have given rise to this particular ¢ -waveform.
The whole problem thus centres round two distributions, the a priori distribution,
called p,(¥), and the a posteriori distribution denoted pj (¥). The difference
of the two corresponding entropies is the quantity of information gained.

Without entering into too much mathematical analysis, we may indicate
in outline hQW'pl<T) is found, because this is really the heart of the

problem. Let us suppose that the received waveform is observed for a
duration of time D, and denote it by
y(t) = u(t = 7,) + n(t),

where u(t) is what would have been received with no time-delay T, and no
noise n(t), and is presumed known to the observer. If he supposcs the true
value of the range to be v , he calculates that the noise would have to be

y(t) = ult - ¥},

The probability of such noise then determines inversely(j) the probability

that his hypothesis ¥ was correct. Now the probability density for the

randsm noise fluctuation in its multi-dimensional waveform space is proportional
to

- W/Ng
e

where W is the total energy of the nolsge over the interval D, and Ng is the
mean noise power per unit bandwidth, so the probability density in favour of

the hypothesisiis given by

2
1

pr () = Nexp —N-%JD {y(6) = ult - )} a

if the a priori probability distribution po (v) is uniform. We shall in
fact take p, (¥v) to be uniform over an arbitrary interval of range T, within
which it is assumed that ¥ is known to lie. (This a priori interval T may

be less than or equal to the repetition period of u(t).) Consequently,
p; (W), is snly defined over the interval T and A must be chosen to normalize

it accordingly. We may note in passing that the most probable value of ¥
is. that which gives the least mean square departure of y from u(t -v ).

Any factors in the expression for pl(ﬁ) which do not depend »n v may

obviously be absorbed intc the normalizing constant, and if D is an integral
multiple »f the repetition period,vwe are left only with

p1(t) = TAexp [ ﬁof y(t) ult - %) dtj
5 ,
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This expression is interesting because the intepgral in it bas the
fauniliar form of the sutput from a linear filter whosc impulse
response ig u(~t), the time-reverse of the transmitted waveform, and
whose input is simply the received waveform v (t). The 1imits of
integration for such a filter, however, would go from t-D to t,wherecas
the limits above are quite fixed. To follow up this question would
take too long, but it does have an interesting bearing on the topic af
optimum filtering, a.d especially on the result of Van Vlieck and

Middleton (%) that just such a filter would give the maximum peak
signal~to-noise ratio.

Having decided on a form for py (%) and derived an expression for
plcV), there would seem to be nothing to prevent us, in principle, from
calculating the corregponding entropies Hy and Hy forthwith. Indeed,
Ho can be seen immediately to equal log T, but the calculation of Hj
takes much longer and cannot be obtained without first investigating
the properties of plfﬁ). This distribution itself is, in any case,
more important both theoretically and practically than its entropy,
for while the entropy enables us to determine the quantity of infor-
mation for comparison with Shannon, it leaves the interpretation of the

information —~ or lack of it — entirely out of account, We may begin
examining pl(ﬁ) by writing the full expression for the received
waveform in place of y(t) in the integral. Then
¥) + hQ¢
where 2 j | |
gle) = Noud D u(t —»Tb) u(t ~V);dt

i)

]

%Ofls ri(t) u(t —7T)dt

It will be seen that g(¥) is obtained from the signal actually received,
and h(v) from the noise. An observer, it must be remembered, could
form plcr) after any one observation, but he could not of course
determine g(®) and h{y) separately as we are doing.

Consider first the "signal function" g(¥). The waveform uEt; which
generates it, is a high-frequency function of %t and this makes g i

a high-frequency function of T, but the envelope of g(v) is slowly

varying (by comparison with the carrier) because it is controlled by the
bandwidth of u(t). For the present, let us forget the carrier in g(v),

to which we shall return at the end, and concentrate on the envelope alone.
It is almost obvious and not difficult to show mathematically, that this
has a maximum at ¥ = <T,, where its value is 2E/N,, E being the total
received signal energy. - In fact, the envelope of g(¥) will have a single
peak at T, and be negligible, if not precisely zero, elsewhere. This
last is not a mathematical deduction, it is a statement applying to
practical waveforms, whether amplitude or frequency modulated, and is the
very feature by which the suitability of any waveform for radar may be
judged. It ensures that the message-locus 1s well spread out in waveform

space.

The "noise function" h{¥') has certain features in common with the
signal function. It has, for example, a slowly varying envelope
controlled by the bandwidth of u(t), but it is a stationary random
function of ¥, and has all the characteristics of noise which has passed
through a high~frequency pass band filter, except that the RMS value of
its envelope is 2,/E/No, which happens to increase as the received signal
energy increases.

We now have sufficient facts to discuss all that is of qualitative
importance about the a posteriori distribution. It is clear, to
start with, that pl(T) is partly a random function of V¥, owing to the
presence of h(v). It may seem a confusing idea that a probability
distributicn should itself be random, but it is simply a matter of
being clear about ensembles. The distribution p) (v) represents the
frequency with which various ranges ¥.could give Tise tc the exact

!
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vaveform which we have privately stated to be due on this occasion
Yo a range T, It will obviously depend, to some extent, on the
carticular way in which the noise happened to act on this occasion.
¥ith a fixed true range 7%,, therefore, Py &) will be different frcm one
ouzasion to another, and it is just this randomness which h(v) represents.

It should te clear that if E< Ny, there will be no marked
accumulation of probability near T, because in terms »f envelopes
the RUS value 2A/E/il; of h(¥) will exceed the peak value 2E/Ng of g(v¥).
Throughout the remainder of the theory,we are in fact forced to assume

that
E>> N,

for purely mathematical reasons, but since it is a necessary condition

fcr satisfactory observation, the assumption is not seriously embar-

rassing. This energy criterion is not in any way peculiar to radar,

and is not connected with the threshold effect due to coding. When +

E 7> > No, the peak value of g will be so large that, after normalization,

the probability distribution plfﬁ) will be almost unaffected by the presence
of h(¥), at least for most values of ¥ . Indeed, the whole of the peak in
g ) except a small region immediately surrounding its apex will be similarly
reduced, and expansion of the exponent about 'ﬁo will yield a Gaussian

distribution for p](f). The standard deviation works out to be
B T LY
o = ﬁ 55

whore B 2 is the second moment of the power spectrum of the transmitted
waveform about its centroid. The quantity B is the one really important
parameter associated with the transmitted waveform, and is equal, apart
from a constant factor, to the "effective bandwidth" adopted by -Gabor (5).
The standard deviation o gives us a tentative measure of the accuracy with
which ¥ may be determined, As would be expected, @ decreases with an
increase in signal energy and also with an increase of transmitter band-
width such as might arise from the use c¢f shorter pulses.

Two +things appear at first to be wrong with the above result: the
first is that the a posteriori distribution is apparently centred exactly
on Y. Since it is within the observer's power to determine pj (¥) on any
occasion, apparently he could look for the centre of the peak and so
determine V¥, exactly, which would contradict the very uncertainty the
distribution is supposed (inversely) to describe. It is, of course, the
noise function h(V§ which removes this paradox and it can be shown that
its effect is to disturdb the position of the peak in a random manner and
by just the right amount. Its width is largely unaffected by the presence
»f h, however, so that O remains a valid measure of range error. The
second ~bjection arises the moment comparison is made with general com-
munication theor'y,(2 which sets a limit of E/Ng natural units of information
on any message of energy E. Yet if {# is idincreased and E/Nb kept fixed, it
would appear that® can be made as small as desired. This would make Hj
ag small as desired and corresponds to increasing the quantity of received
information without limit, which would contradict Shannon's fundamental
theorem. Again it is the presence of h(%¥) which prohibits this. As B
is increased, the autocorrelation interval inh(¥) is proportiocnately
reduced and more statistically independent opportunities exist for h(f)
to produce a spurious peak well in excess of its RMS value, and therefore
big enough to show up on the normalized a posteriori distribution, Every
time hCﬂ) succeeds in doing this, a spurious Gaussian distribution is
introduced in pl(v) and there comes a stage when there are so many of these
that g (¥) might almost as well not be present. These are conditions of
completely ambiguous reception, in which the accuracy »f measurement might
be high if the observer only knew which peak te select, The ambiguity operates
in such a way as to reduce the quantity of information by just the amount
required to bring it within the fundamental limit of E/Nb natural units.
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The a posteriori distribution thus describes Uwo gt

kinds of uncertainty of reception. First there iz the 2moll connectod
region of uncertainty in the neighbourhood of the true range. Thig

must inevitably be present as long as the signal energy is finite, and

is no cause for complaint. But in addition, when (¥ is too large, there is

a wild uncertainty, even though the received signal energy is large,which
prevents an observer from knowing even approximately whereabouts in

the interval T the true value of ¥ 1is te¢ be found. We may call this
effect non-topological error, because it arises from the non-topological
mapping of a one-dimensiocnal ensemble of messages into a multi-dimensional
waveform space. This effect shows up one of the weaknesses of Judging
a communication system solely in terms of quantities of information.

When non-topological error is present, the system is useless from a
practical point of view and yet the mathematical quantity of information
may be quite large. It is a question of intelligibility rather than
information.

Intelligibility is a concept associated with meaning, and it is not
to be expected that a general theory of it should be quite as straight-
forward as that of information-content. However, it may happen in
particular problems that a guantitative assessment is possible. In
radar, it is especially simple. We,define unintelligibility by the
non~topological ambiguity of reception , A, given by the area under
1 ) which lies nowhere near the true value. The Figure illustrates
the dependence of A on log TR and E/Ng. Asg remarked above, ambiguity
increases with B , but it also depends on E/N, and is responsible for
a threshold of intelligibility as the total received energy increases,
as it would with increasing time of obervatien. The threshold extends
over one or two units of E/N, and occurs (very roughly) where

log TB = E/Ng

Contours of information, I, are also shown. It will be seen that they
behave in a markedly different manner on either side of the threshold.

In the ambiguous region they would be strictly asymptotic to the
fundamental limit I = E/N, if the difference of Hp and Hy had been
evaluated in a straightforward manner. But in making a detailed
calculation of I, we have in fact tampered with the a posteriori
distribution by smoothing out the fine structure produced by the "carrier!
in g®) and h(v). The effect of the carrier is to make the signal peak
in p1(%v) consist, not of a single Gaussian distribution of standard
deviation ¢ , mentioned before, but cf a closely packed sequence of very
narrow Gaussian distributions under a Gaussgian envelope with this standard
deviation, We have thought it best to remove the fine structure
information by short-scale smoothing of pl<T) because it is of no value
in practice. It arises from the comparison which the observer could make
between the carrier phases of transmitted and received waveforms, and its
removal dncreases the a posteriori entropy by a term in log (E/Nb),which
is just what prevents the absolute 1limit being attained in the ambiguous
region., In the unambiguous region, the information I is limited solely
by the topological error in range and increases comparatively slowly

with energy. This is because additional energy, once the threshold

has been crossed, is not employed in the systematic removal of ambiguity
but in the improvement of range accuracy by continued repetition of
information already partly known.

To sum up, it i. seen that there are in radar two quite different
conditions of reception. There is ambiguous recepbtion in which the
information rate is high and the intelligibility low, and there is
unambiguous reception in which the information rate is low but intelli-—
gibility is high. It would therefore appear that merely to cvaluate
quantities of information, and compare them with the ideal limits
is not adequate guide to the behaviour of a communication system.
Some figure for intelligibility may also be necessgary in particulaa
problems, The analysis of radar shows that lous g i b
be measured, in at least this one problem, by non-bopoloc . . bk
it is quite possible to imagine systems in which nore-topologion® o
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would not dimply complete loss of intelligibility. Even in radaxr, such
a situation is not inconceivable., It really depends on the purpose
for which range information is required and this i1s a question of meaning.
In fact the whole question of defining a natural message dimensionalliy is
one of meaning., So in suggesting that theree is some connection between
intelligibllity and non-topological error, which itself hinges on the
specification of a natural message dimensilonality, we may perhaps be merely
replacing one vague term by another,

I must conclude by thanking my coileague, Mr., I.L. Davies, for his
part in the work I have summarized (6). Between the present version and the
more extended one (loc.cit.), there are certain inconsistencies of notation,

deliberately introduced here for gimplicity.
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