
Radar is a 
i.t i:-; rluitc: 

s:yst cm of measurement rather than colllrnlll-iic?.-l;i i>n, y-et 
possible to npply information theory to it, in ~orci~r to 

see ~hethcr the very small received signals inherently contain :ts much 
information as those of an ideal communication system working ,?t tile 
s ap-, e . signal-to-noise ratio. It turns out that they do, very nearly, 
but this is not really what makes radar a suitable topic for i;h:is 

symposium. The main inte est is in the type of coding it represents. 
Shannon has pointed out (17 that when the natural number qf dimensions 
of a message is artificially increased by mapping non-topologically 
into a signnl space of higher dimensions, a marked threshold effect 
is produced. Radar exhibits such a threshold particularly well and 
it is to this that I wish to direot attention _ 

We shall consider only the most obvious radar problem, that of 
measuring the range of a stationary target. This is one-dimensional 
information, and it is important to realize that the way in which it 
is coded is almost entirely beyond control: it is determined by the 
very nature of radar. A known periodic waveform is transmitted, 
echoed, and received again. The time%'which elapses between trans- 
mission and reception represents the range of the target. Unlike most 
systems of electrical signalling, the choice of transmitted waveform does 
not represent the required information but forms part of the observer's 
a priori knowledge. All the 'required information is embodied in the 
time-delay of the received waveform. If we fix the received signal 
energy, this leaves the received signal with only one degree of freedom, 
but the noise which goes with it will have many degrees of freedom. 
In geometrical language, the received signal is treated as a point in 
a multi-dimensional waveform space, and the ensemble of reoeived signals 
lie along a one-dimensional twisted curve embedded in this hyper-space, 
and incidentally lying on the surface of a hyper-sphere. One there- 
fore expects a threshold effect as soon as the noise perturbation is 
sufficiently large to short-cut the convolutions of this message locus, 
and introduce wild ambiguities of range measurement. 

However, there is really no difference in principle between inter- 
preting a radar signal and any other kind of signal. The observer 
always has some a priori knowledge of what he is trying to receive, and 
it merely happens that in radar he knows, apart from noise, the exact 
shape of the waveform. Obviously his first step is, effectively, 
to place the transmitted and received waveforms side by side, and try 
to estimate the time-shift-r. If the possible values of 2' are know-n a 
priori to be continuously distributed, it should be clear that in the 
presence of noise he cannot hope to determine Y' exactlp,because this 
would represent an infinite quantity of information and would require 
an infinite amcunt of signal energy. His best estimate is therefore 
bound to be subject to error, One might suppose, then, that the first 
problem is to determine theoretically the spread of his best guesses 
over an ensemble of received waveforms all resulting from the same 
true value of 'r . The average quantity of information obtained in 
any determination would then be given by 

I = H(Y) - H,(Y). 

Shannon (2) uses x to symbolise transmission and y to symbolise 
reception, but it must be understood that the "transmitted message" in 
radar has nothing to do with the radar transmitter; it refers to the 
true value of-i 
The entropy H(y) 

while y refers to the observer's estimate of r . 
is a measure of the spread of variability of all 

previous guesses over a complete ensemble of true values, and therefore 
represents the a priori uncertainty about the next sne, while the 
conditional entropy H,(y) represents the spread of the guesses in an 
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I = H(x) - HJX) 

Here H(x) is the entropy of the a priori distribution for the true 
value of y , net the guessed value. The equivocation, Hy(x), --represents 
the observer's uncertainty a.bout the true value of%on any one vjcoasion, 
i.e. when the received waveform is fixed. We have, then, toconsider a fixed 
received waveform, arising from a true range Y. say, and find out from 
it, not simply the most probable value of'rit might represent, but a cc)m- 
Plete probability distribution for all possible values of 'I. This is not 
subjective at all: it represents the matter-of-fact frequency distribution 
of those valuesoY&'which could have given rise to this particular %o-waveform. 
The whole problem thus centres round two distributions, 
called pot'L'), 

the a priori distribution, 
and the a posteriori distribution denoted all The difference 

of the two corresponding entropies is the quantity of information gained. 

Without entering into too much mathematical analysis, we may indicate 
in outline how ~~(3) is found, because this is really the heart of the 
Problem. Let us suppose that the received waveform is observed for a 
duration of %ime D, and denote it by 

y(t) = u(t - *to> + n(t), 
where u(t) is what would have been received with no time-delay 
noise n(t), 

^I, and no 
and is presumed known to the observer. If he supposes the true 

value of the range to be t' , he calculates that the noise would have to be 

y(t) - u(t -v), 

The probability of such noise then determines inversely (3) the probability 
that his hypothesis*6 was correct. Now the probability density for the 
random noise fluctuation in its multi-dimensional waveform space is proportional 
to 

- who 
e 

where W is the total energy of the noise over the interval D, and No is the 
mean noise power per unit bandwidth, so the probability density in favour of 
the hypothesisris given by 

p1 ( ) = .J.,exp 
2 

y(t) - u(t - )k dt 

if the a priori probability distribution p. (7) is uniform. We shall in 
fact take p. (,) Y to be uniform over an arbitrary interval 3f range T, within 
which it is assumed that ?: is known to lie. (This a priori interval T may 
be less than or equal to the repetition period of u(t).) Consequently, 
Pl (7;') , is anly defined over th e interval T and >L must be chosen to normalize 
it accordingly. We may note in passing that the most probable value of %' 
&that which gives the least mean square departure of y from u(t -'L' ). 

Any factors in the expression for pl(L') which do not depend 3n %' may 
obviously be absorbed into the normalizing constant, and if D is an integral 
multiple >f' the repetition period, we are left only with 

pl(?;) = -Jexp y(t) u(t - -t') dt 
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Tl1i.s i-Xlpi‘f.:c?Lif~i?il is i.1ltcrest:i.n~ ix2cau:;e t1,c itli;<:p"l in .i.-I; h-1:; -the 
familiar :form of the outpl~t from a linear %'iltez, i;illo:;c ilnl~lu.I.:-;c 
response ii; d-4, tile time-reverse of the trallsmittcd ;7;~ve.forrn, and 
whose input is simply the received waveform y(t). The limit:; of 
integration for such a filter, however, would go from t-D to t,whereas 
the limits above are quite fixed. To follow up this question would 
take too long, but it does have an interesting bearing on the topic -f 
optimum filtering, aric! 

(4) 
especially on the result of Van Vleck and 

Middleton that just such a filter would give the maximum peak 
signal-to-noise ratio, 

Having decided on a form for po(%) and derived an expression for 
Pl (‘C), there would seem to be nothing to prevent us, in principle, from 
calculating the corresponding entropies Ho and H forthwith. Indeed, 
Ho can be seen immediately to equal log T, but t ?i e calculation of Hl 
takes much longer and cannot be obtained without first investigating 
the properties of pl(rZ). This distribution itself is, in any case, 
more important both theoretically and practically than its entropy, 
for while the entropy enables us to determine the quantity of infor- 
mation for comparison with Shannon, it leaves the interpretation of the 
information - or lack of it - entirely out of account, We may begin 
examining pi(t) by writing the full expression for the received 
waveform in place of y(t) in the integral. Then 

where 

~1 t-2) = )ce d’6’) + h(y) 

k?(Y) 
2 i 

= Now_” D u(t s - l-i*) u(t -a’> d-t 

2. 
h(7;') = ZQ s D n-(t) u(t -t>dt 

It will be seen that g(T) is obtained from the signal actually received, 
and h(Y) from the noise. An observer, it must be remembered, could 
form pi(v) after any one observation, but he could not of course 
determine g@) and h(d) separately as we are doing. 

Consider first the "signal function" g(X). The waveform u which 
generates it, is a high-frequency function of t and this makes g 
a high-frequency function ofy, but the envelope of g(Y) is slowly 
varying (by comparison with the carrier) because it is controlled by the 
bandwidth of u(t). For the present, let us forget the carrier in g(G), 
to which we shall return at the end, and concentrate on the envelope alone. 
It is almost obvious and not difficult to show mathematically, that this 
has a maximum at y = %,, where its value is 2E/N,, E being the total 
received signal energy. In fact, 
peak at *to and be negligible, 

the envelope of g(Y) will have aT;;;gle 
if not precisely zero, elsewhere. 

last is not a mathematical deduction, it is a statement applying to 
practical waveforms, whether amplitude or frequency modulated, 'and is the 
very feature by which the suitability of any waveform for radar may be 
judged. It ensures that the message-locus is well spread out in.waveform 
space. 

The "noise function" h(v) has certain features in common with the 
signal function. It has, for example, a slowly varying envelope 
controlled by the bandwidth of u(t), but, it is a stationary random 
function of*ti, and has all the characteristics of noise which has passed 
through a pass band filter, except that the RMS value Jf 
its envelope is a, happens to increase as the received signal 
energy increases. 

We now have sufficient facts to discuss all that is of qualitative 
importance about the a Posteriori distribution. It is clear, to 
start with, that pl(;c') is partly a random function of X, owing to the 
Presence of h(t). It may seem a confusing idea that a probability 
distribution should-itself be random, but it is simply a matter of 
being clear about ensembles. The distribution pi(c) represents the 
frequency with which various ranges f: could give rise tc the exact 

Authorized licensed use limited to: Naval Surface Warfare Center (Dahlgren). Downloaded on December 8, 2008 at 14:43 from IEEE Xplore.  Restrictions apply.



- 111 - 

y!L\veform which we hnve privately stated to be due on this occasion 
+'I a range Ti,. It will obviously depend, to some extent, on the 
particular way in which the noise happened to act on this occasion. 
Vith a fixed true range 'to, therefore, pl CL') will be different frcm 3ne 
oti.:3:1sion to another, and it is just this randomness which h(Y) represents. 

It should be clear that if E-C No, there will be no marked 
accumulation of Qrobability nearto, because in terms of envelopes -- _- 
';!:a REZS value 2.,\/Efil, of h(C) will exceed the peak value 2E/No of g(X). 
'i!l;ro-ghout the remainder of the theory,we are in fact forced to assume 
that 

E>>N, 

fo:* purely mathematical reasons, but since it is a necessary condition 
fcr satisfactory observation, the assumption is not seriously embar- 
ra5:sir.g. This energy criterion is not in any way peculiar to radar, 
7.nd is not connected with the threshold effect due to coding. When I 
E 77N0, the peak value of g will be so large that, after normalization, 
tile probability distribution pi(t) will be almost unaffected by the presence 
of h(-G), at least for most values of X . Indeed, the whole of the peak in 
g(t) except a small region immediately surrounding its apex will be similarly 
reduced, and expansion of the exponent about ti 
distribution for pJ ('i;). 

will yield a Gaussian 
The standard deviatiog works out to be 

vr:;;re/i 2 is the second moment of the power spectrum of the transmitted 
waveform about its centroid. The quantitypis the one really important 
parameter associated with the transmitted waveform, and is equal, apart 
from a constant factor, to the "effective bandwidth" adopted by,Gabor (5). 
The standard deviation u- gives us a tentative measure of the accuracy with 
which % may b.e determined. As would be expected, O-decreases with an 
increase in signal energy and also with an increase of transmitter band- 
width such as might arise from the'use cf shorter pulses. 

Two things appear at first to be wrong with the above result: the 
first is that the a posteriori distribution is apparently centred exactly 
011 
occas%% 

Since it is within the observer's power to determine pl(%') on any 
apparently he could look for the centre of the peak and so 

determin: to exactly, which would contradict the very uncertainty the 
distribution is su posed (inversely) to describe. 
noise function h(t P 

It is, of course, the 
which removes this paradox and it can be shown that 

its effect is to disturb the position of the peak in a random manner and 
by just the right amount. Its width'is largely unaffected by the presence 
of h, however, so that CT remains a valid measure of range error. The 
second lbjection ari 
munication theory, (27 

es the moment comparison is made with general com- 
which sets a limit of E/No natural units of information 

on any message of energy E. Yet if 8 is increased and E/N, kept fixed, it 
would appear thatr can be made as small as desired. This would make Hl 
as small as desired and corresponds to increasing the quantity of received 
information without limit, which would contradict Shannon's fundamental 
theorem. Again it is the presence of h(t) which prohibits this. As P 
is increased, the autocorrelation interval in h(t) is proportionately 
reduced and more statistically independent opportunities exist for h(V) 
to produce a spurious peak well in excess of its RMS value, and therefore 
big enough to show up on the normalized a posteriori distribution. Every 
time h(Y) succeeds in doing this, 
introduced in pi(Y) 

a spurious Gaussian distribution is 
and there comes a stage when there are so many of these 

that g (x) might almost as well not be present. These are conditions of 
completely ambiguous reception, in which the accuracy of measurement might 
be high if the observer only knew which peak to select. The ambiguity operates 
in such a way as to reduce the quantity of information by just the amount 
required to bring it within the fundamental limit 3f E/No natural units. 
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The i* posteriori distribution .thus describ(,c-S , XI, I 'i,'i) I,,! ; i :: r?.i rIC.ri,i Lli 
kirtdn of uncertainty of reception. First there j.:, t;hc-: : :!,,'li 1. Connr~c: 1 <xl 
region of uncertainty in the neighbourhood of -th<; l;ruc .r~:in(re. 'Ch',.:; 
must inevitably be present as long as the signal (:ncr[fy is finite, aI*l~l 
is no cause for complaint. But in addj.t;ion, when $j is too large, there is 
a wild uncertainty, even though the received siJna1 enemy i-s larpe,which 
prevents an observer from knowing 

~-;.--------.--f 
even approximately wllerea-bouts in 

the interval T the true value ofZ is ts be found. IWe may call this 
effect non-topological error, because it arises from the non-topological 
mapping of a one-dimensional ensemble of messages into a multi-dimensional 
waveform space. This effect shows up one of the weaknesses of judging 
a communication system solely in terms of quantities of information. 
When non-topological error is present, the system is useless from a 
practical point of view and yet the mathematical quantity of information 
may be quite large. It is a question of intelligibility rather than 
information. 

Intelligibility is a concept associated with meaning, and it is not 
to be expected that a general theory of it should be quite as straight- 
forward as that of information-content. However, it may happen in 
particular problems that a quantitative assessment is possible. In 
radar, it is especially simple. We..$efine unintelligibility by the 
non-topological ambiguity of reception, A, given by the area under 
pl(T;) which lies nowhere near the true'value. The Figure illustrates 
the dependence of A on log Tg and E/No. As remarked above, ambiguity 
increases with 8 , but it also depends on E/N, and is responsible for 
a threshold of intelligibility as the total received energy increases, 
as it would with increasing time of obervatisn. The threshold extends 
Over one or two units of E/N, and occurs (very rcughly) where 

log T/3 = E/N, 

Contours of information, I, are also shown. It will be seen that they 
behave in a markedly different manner on either side of the threshold. 
In the ambiguous region they would be strictly asymptotic to the 
fundamental limit I = E/N, if the difference of Ho and Hl had been 
evaluated in a straightforward manner. But in making a detailed 
calculation of I, we have in fact tampered with the a posteriori 
distribution by smoothing out the fine structure produced by the "carrier" 
in g(V) and h(T). 
in pi(G) consist, 

The effect of the carrier is to make the signal peak 
not of a single Gaussian distribution of standard 

deviation w mentioned before, but cf a closely packed sequence of very 
narrow Gaussfan distributions under a Gaussian envelope with this standard 
deviation. We have thought it best to remove the fine structure 
information by short-scale smoothing of pl(%') because it is of no value 
in practice. It arises from the comparison which the observer could make 
between the carrier phases of transmitted and received waveforms, and its 
removal increases the a posteriori entropy by a term in log (E/No),which 
is just what prevents the absolute limit being attained in the ambiguous 
region. In the unambiguous region, the information I is limited solely 
by the topological error in range and increases comparatively slowly 
with energy. This is because additional energy, once the threshold 
has been crossed, is not employed in the systematic removal of ambiguity 
but in the improvement of range accuracy by continued repetition of 
information &ready partly known. 

To sum up, it i,. seen that there are in radar two quite different 
conditions of reception. There is ambiguous reception in which the 
information rate is high and the intelligibility low, and there is 
unnmbiguous reception in which the information rate is low but in-l clli-. 
gibility is high. It would therefore appear that merely to c~~alunte 
quantities of information, and compare them with the idenl limits 
,i-s not adequate guide to the behaviour of a communication :;ystcm.. 
Some figure for intelligibility may also be necessa ~'.y in p:2rt.icllL~-1: 
problems. The analysis of radar shows thnt los:; ~.r j.nti>-! :I .; ic.i.i>:i 1 ,i.i.,;,, c:': :I 
be mensured, in at least this one problem, by 17.o-?-.,t;o,),-)?c'.-io:ll. / i "/: -/ I;:,; 
it j-s qllj-te I?ossible to i.~~l?,@.ne systt:ms in vjllic? II!~',!-.'~(.,~~~,:!..I~' >i., ._ : j. , 
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rli0ul.d not imply complete 1053 of intelligibility. 
2~ s.ituation is 

Even in radar, sucli 
1lo1: inconceivable. It really depends on the purpose 

for whicll raq';o information is required and this is a. question of meaning. 
In fact tile whole question of defining a natural message dimensionaliiy is 
one of meaning. So ix suggesting that therec is some connection between 
intelligibility and non-topological error, which itself hinges on the 
specification of a natural message dimensionality, we may perhaps be merely 
replacing one vague term by another. 

I must conclude by thanking my colleague, Mr. I.L. Davies, for his 
part in thework I have summarized (6). Between the present version and the 
more extended one (loc.cit.), there are certain inconsistencies of notation, 
deliberately introduced here for simplicity. 

1. Shannon C.E. 

2. Shannon C.E. 

3. Cherry E.G. 

4. Van Vleck J.H, 
Bc Middleton~D. 

5. Gabor D. 

6. Woodward P.M. 
& Davies I.L. 
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